Learning Depth from Single Monocular Images

نویسندگان

  • Ashutosh Saxena
  • Sung H. Chung
  • Andrew Y. Ng
چکیده

We consider the task of depth estimation from a single monocular image. We take a supervised learning approach to this problem, in which we begin by collecting a training set of monocular images (of unstructured outdoor environments which include forests, trees, buildings, etc.) and their corresponding ground-truth depthmaps. Then, we apply supervised learning to predict the depthmap as a function of the image. Depth estimation is a challenging problem, since local features alone are insufficient to estimate depth at a point, and one needs to consider the global context of the image. Our model uses a discriminatively-trained Markov Random Field (MRF) that incorporates multiscale localand global-image features, and models both depths at individual points as well as the relation between depths at different points. We show that, even on unstructured scenes, our algorithm is frequently able to recover fairly accurate depthmaps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Depth from Single Images with Deep Neural Network Embedding Focal Length

Learning depth from a single image, as an important issue in scene understanding, has attracted a lot of attention in the past decade. The accuracy of the depth estimation has been improved from conditional Markov random fields, non-parametric methods, to deep convolutional neural networks most recently. However, there exist inherent ambiguities in recovering 3D from a single 2D image. In this ...

متن کامل

Saccade amplitude disconjugacy induced by aniseikonia: role of monocular depth cues

The conjugacy of saccades is rapidly modified if the images are made unequal for the two eyes. Disconjugacy persists even in the absence of disparity which indicates learning. Binocular visual disparity is a major cue to depth and is believed to drive the disconjugacy of saccades to aniseikonic images. The goal of the present study was to test whether monocular depth cues can also influence the...

متن کامل

Bayesian depth estimation from monocular natural images.

Estimating an accurate and naturalistic dense depth map from a single monocular photographic image is a difficult problem. Nevertheless, human observers have little difficulty understanding the depth structure implied by photographs. Two-dimensional (2D) images of the real-world environment contain significant statistical information regarding the three-dimensional (3D) structure of the world t...

متن کامل

Aperture Supervision for Monocular Depth Estimation

We present a novel method to train machine learning algorithms to estimate scene depths from a single image, by using the information provided by a camera’s aperture as supervision. Prior works use a depth sensor’s outputs or images of the same scene from alternate viewpoints as supervision, while our method instead uses images from the same viewpoint taken with a varying camera aperture. To en...

متن کامل

Combining Monocular and Stereo Depth Cues

A lot of work has been done extracting depth from image sequences, and relatively less has been done using only single images. Very little has been done merging these together. This paper describes the fusing of depth estimation from two images, with monocular cues. The paper will provide an overview of the stereo algorithm, and the details of fusing the stereo range data with monocular image f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005